

Preclinical Therapies Developed for LD: where we are and future perspectives

Lafora disease Science Symposium Bologna, Italy October 9-10, 2023

Matthew S. Gentry, Ph.D. Professor & Chair, Biochemistry & Molecular Biology University of Florida, College of Medicine Director, Lafora Epilepsy Cure Initiative (LECI)

Brain Glycogen Metabolism

Markussen et al., 2023, J Neurochemistry

Lafora bodies (LBs/PGBs) drive Lafora disease

mice

Defined Disease Mechanism = Therapeutic Opportunities

NIH P01: Lafora epilepsy – basic mechanisms to therapies

NIH P01: Lafora Disease – Basic Mechanisms to Therapies

Science Projects:

Gentry/Vander Kooi/Sanz: Personalized medicine, antibody-enzyme therapy, & repurposing.

Roach/Depaoli-Roach/Hurley: Small molecule inhibition of glycogen synthesis as LD therapy.

IONIS Minassian: Genome editing & ASO mRNA suppression as LD therapies.

Guniovart/Duran: Defining the therapeutic window for the treatment of LD.

Defined Mechanism = Therapeutic Developments

Project 1: Antibody-Enzyme Fusions

VAL-0417 ICV administration ablates brain LBs in vivo

Brewer et al., 2019 Cell Metabolism

Broad brain biodistribution of VAL-1221 via i.c.v

VAL-1221 ablates LBs after 7-day i.c.v

VAL-1221 rescues LKO N-glycan deficiency

Canine VAL-1221 i.c.v. infusion


```
1.8 ml infusion of 10
mg/ml VAL-1221 in
right lateral ventricle
```

```
↓
Euthanized 14 days
after infusion
↓
Multiple tissues
collected and assessed
```

for GAA

Evans blue injection at necropsy

Catheter entry point

VAL-1221 in brain homogenates

VAL-1221 is enriched in neurons in hippocampus

Summary of LD Antibody-Enzyme Fusion Data

We have tested >400 mice to date with VAL drugs

Delivery Method	VAL-0417 Fab AMY2A	VAL-1221
I.M.		
I.V. systemic		
I.C.V.		
I.V. brain	Testing	Testing
NHP safety	-	I.V. NHP
Canine study	-	I.C.V. Testing
Clinical Trial		1.C.V.

Brewer et al., 2019 *Cell Metabolism* Sun et al., 2019 *Cell Metabolism* Austin et al., 2019 *Mol Pharmaceutics* Zhou et al., 2020 *Trends Mol Med* Sun et al., 2021 *Cell Metabolism* Young et al., 2022 *EMBO Mol Med*

Current VAL-0417 & VAL-1221 efforts

Gentry lab:

- Define minimum dose w/ maximal response
- Define LB re-accumulation rate
- Establishing human & mouse biomarkers

Project 2: Anti-Sense Oligonucleotide (ASO) Therapy

Donohue et al., 2023 *Neurotherapeutics* Nitschke et al., 2022, *Brain* Ahonen et al., 2021, *Brain*

GYS1 ASO Tx slows LBs in laforin KO mice

ASO i.t. delivery after disease onset

Long-term ASO Tx prevents LBs in laforin KO mice

Ahonen et al., 2021, Brain

*** ••

GYS1 ASO Tx slows LBs in malin KO mice

GYS1 ASO Tx Decreases Epileptiform Discharges

Donohue et al., 2023 Neurotherapeutics

Current GYS1 ASO efforts

Minassian & Gentry labs:

• Testing the ASO in other disease models

Ionis Pharmaceuticals:

- Completing analysis of Natural History Study, NCT03876522
- Working and has worked with other companies for partnerships

Project 3: Small Molecule Therapy

H23 PR7

PZ11 PZ15

PZ19 PZ23

IF9

10000

MZE001 decreases glycogen in WT & Pompe mice

- Pompe mice exhibit 10-fold higher glycogen
- MZE001 reduces the levels by 50%, i.e. 5-fold

Ulman et al., Sci Trans Med In Press

MZE001 + ERT normalizes glycogen in Pompe mice

MAZE Therapeutics:

- Completed Phase I in 120 unaffected individuals
- Announced Phase II in Pompe patients for Q3 2023
- Presented data on possible use in muscular dystrophy patients
- Sold the entire program to Sanofi for \$750M
- Sanofi is onboarding the program
- No data to suggest that MZE001 crosses BBB
- Science Translational Medicine paper in press

Project 4: Window of Opportunity – Treatment Timing

Duran et al., 2020, *Mol Neurobiol* Auge et al., 2018, *Glia*

Early re-expression of malin reverses LB aggregates

Varea et al., 2022, Brain Communication

Late re-expression of malin stops LB progression

B Total glycogen measurement

GSDs are ultra-rare alone, more common together

Туре	Alternate names or subtype	Affected Enzyme/Pathway	Gene	OMIM [*] Phenotype no.
0	0a	Liver glycogen synthase	GYS2	240600
	0b	Muscle glycogen synthase	GYS1	611556
I	Ia; von Gierke	Glucose-6-phosphatase α	G6PC	232200
	Ib; von Gierke	Glucose-6-phosphate transporter	SLC37A4	232220
П	Pompe	Acid a-glucosidase	GAA	232300
III	Cori/Forbes	Glycogen debranching enzyme	AGL	232400
IV	Andersen	Glycogen branching enzyme	GBE1	232500
v	McArdle	Muscle glycogen phosphorylase	PYGM	232600
VI	Hers	Liver glycogen phosphorylase	PYGL	232700
VII	Tarui	Muscle phosphofructose kinase	PFKM	232800
IX	IXa	Phosphorylase kinase (a2 subunit)	PHKA2	306000
	IXb	Phosphorylase kinase (β subunit)	РНКВ	261750
	IXc	Phosphorylase kinase (y subunit)	PHKG2	613027
	IXd	Phosphorylase kinase (al subunit)	PHKA1	300559
х	-	Muscle phosphoglycerate mutase	PGAM2	261670
XI [∰]	Fanconi-Bickel	Glucose transporter 2	SLC2A2	227810
XII	-	Aldolase A	ALDOA	611881
XIII	-	β-enolase	ENO3	612932
XV	-	Glycogenin-1	GYG1	603942

GSDs impact 1:~25,000

Sanofi (Lumizyme[®]

\$1.1B in 2022

2006 FDA approved

Ayozyme[®]

Pompe Disease

> J Neuropathol Exp Neurol. 2008 Aug;67(8):803-18. doi: 10.1097/NEN.0b013e3181815994.

Temporal neuropathologic and behavioral phenotype of 6neo/6neo Pompe disease mice

Richard L Sidman ¹, Tatyana Taksir, Jonathan Fidler, Michael Zhao, James C Dodge, Marco A Passini, Nina Raben, Beth L Thurberg, Seng H Cheng, Lamya S Shihabuddin

> Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9419-24. doi: 10.1073/pnas.0902534106. Epub 2009 May 27.

Neural deficits contribute to respiratory insufficiency in Pompe disease

Lara R DeRuisseau ¹, David D Fuller, Kai Qiu, Keith C DeRuisseau, William H Donnelly Jr, Cathryn Mah, Paul J Reier, Barry J Byrne

Aditi Korlimarla,[#] Jeong-A Lim,[#] Priya S. Kishnani, and Baodong Sun[®]

> Mol Ther. 2012 Jan;20(1):21-7. doi: 10.1038/mt.2011.214. Epub 2011 Oct 18.

Spinal delivery of AAV vector restores enzyme activity and increases ventilation in Pompe mice

Kai Qiu¹, Darin J Falk, Paul J Reier, Barry J Byrne, David D Fuller

Review > Ann Transl Med. 2019 Jul;7(13):290. doi: 10.21037/atm.2019.05.56.

Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy

Barry J Byrne ¹, David D Fuller ², Barbara K Smith ², Nathalie Clement ¹, Kirsten Coleman ¹, Brian Cleaver ¹, Lauren Vaught ¹, Darin J Falk ³, Angela McCall ⁴, Manuela Corti ¹

> J Neurophysiol. 2022 Nov 1;128(5):1133-1142. doi: 10.1152/jn.00026.2022. Epub 2022 Aug 17.

Chemogenetic activation of hypoglossal motoneurons in a mouse model of Pompe disease

Michele L Singer ¹ ² ³ ⁴, Sabhya Rana ² ³ ⁴, Ethan S Benevides ¹ ² ³ ⁴, Brian E Barral ³ ⁴, Barry J Byrne ⁵ ⁶, David D Fuller ¹ ² ³ ⁴

Home Latest Articles Current Issue Past Issues Neurology Video Journal Club Residents & Fellows

August 08, 2023; 101 (6) RESEARCH ARTICLE OPEN ACCESS

Neurolog

Neurofilament Light and Its Association With CNS Involvement in Patients With Classic Infantile Pompe Disease

Maarten J. Mackenbach, 🕑 Eline A.J. Willemse, 💿 Jan J.A. van den Dorpel, 💿 Nadine A.M.E. van der Beek, Jordi Diaz-Manera, Dimitris Rizopoulos, 💿 Charlotte Teunissen, Ans T. van der Ploeg, 💿 Johanna M.P. van den Hout First published lung 19. 2023. DOI: https://doi.org/10.1212/WNIL.000000000207482

Pompe disease patients have CNS & diaphragm issues

> Front Rehabil Sci. 2023 Jul 31:4:1184031. doi: 10.3389/fresc.2023.1184031. eCollection 2023.

Diaphragm pacing and independent breathing in individuals with severe Pompe disease

```
Cristina Liberati <sup>1</sup>, Barry J Byrne <sup>2</sup>, David D Fuller <sup>3 4</sup>, Chasen Croft <sup>5</sup>, Teresa Pitts <sup>6 7</sup>, Jessica Ehrbar <sup>3</sup>, Carmen Leon-Astudillo <sup>2</sup>, Barbara K Smith <sup>2 3 4</sup>
```

```
Affiliations I average
```

AAV-mediated delivery of secreted acid α-glucosidase with enhanced uptake corrects neuromuscular pathology in **Pompe** mice.

Meena NK, Randazzo D, Raben N, Puertollano R.

JCI Insight. 2023 Aug 22;8(16):e170199. doi: 10.1172/jci.insight.170199.

Neurological GSDs (n-GSDs): One Drug – Multiple Diseases

<u>n-GSDs:</u> Lafora disease APBD Cori Disease Pompe disease RBCK1-deficiency

Ongoing & Future Pompe Disease Clinical Trials

Sanofi/Maze:

- MZE001 completed successful Phase I
 - Randomized with 120 unaffected individuals
 - NCT05249621, completed 21 Dec. 2022
- Sanofi acquired MZE001 for \$750M
- Upcoming Phase II in Pompe patients
- **Aro Biotherapeutics:**
 - ABX1100 siRNA targeting GYS1
 - FDA granted it Orphan Drug Status
 - starting Phase I in Canada Q4 2023
 - Unknown if it crosses the BBB

AAV

- 3 ongoing in clinicaltrials.gov
- NCT04093349, NCT05567627, NCT05793307

Acknowledgments

Dr. Ramon Sun

Dr. Craig Vander Kooi

National Institute of Neurological Disorders and Stroke

NIH R35 NS116824 **NIH P01 NS097197** NIH R61 NS111081 NIH R01 CA266004 **NSF MCB1252345**

NIH Institute

EPILEPSY FOUNDATION

D EPILEPSY TOGETHER

Epilepsy Foundation Valerion Therapeutics Ionis Pharmaceuticals Maze Therapeutics

Symptomatic treatment vs. Disease Modifying vs Curative

Symptomatic treatment, supportive care, or supportive therapy is any medical therapy of a disease that only affects its symptoms, not the underlying cause.

A <u>disease-modifying treatment, disease-modifying drug, or disease-modifying</u> <u>therapy</u> is a treatment that delays or slows the progression of a disease by targeting its underlying cause. They are distinguished from symptomatic treatments that treat the symptoms of a disease but do not address its underlying cause.

<u>**Curative treatment**</u> refers to treatment and therapies provided to a patient with the main intent of fully resolving an illness and the goal of bringing the patient – ideally - to their status of health before the illness presented itself.

Human genetics suggests ~65% reduction in muscle glycogen is safe & well tolerated

Analysis of research conducted using data from UK Biobank human subjects with 65% less muscle glycogen reveals no significant association across hundreds of phenotypes including:

- No difference in exercise capacity (exercise output or maximum exercise heart rate)
- > No impact on cardiac function (LVEF, LV wall thickness) nor correlation with heart failure
- No change in serum glucose or correlation with Type II Diabetes

VAL-1221 ICV administration ablates brain LBs in vivo

Chain Longth

VAL-1221 and Myozyme[®] degrade LBs *in vitro*

10 μg VAL-1221 or Myozyme® incubated with 80 μg LBs at 37°C pH 7.5 for 3 days

Gentry lab Myozyme® ICV experiment

- ICV infusion for 2 weeks with PBS or rhGAA (0.185 mg total) in 6 mo LKO mice
- Distribution of Myozyme in the brains of 3 mice
- No significant change in glycogen content according to GCMS

Summary on Myozyme ICV experiments

Experiment	Genotype	Age	Number of mice treated with Myozyme®	Delivery method	Total amount of rhGAA	Duration of treatment	GAA infusion rate	Assay
Gentry	LKO	6 months	3	Alzet osmotic pump	185 µg	2 weeks	92.4 µg / week	GCMS
Serratosa 1	LKO	12 months	4	Punctual ICV	120 µg	1 week	n.a.	PAS
Serratosa 2	Laforin R240X	12 months	9	Punctual ICV	120, 240, 480 µg	1 week	n.a.	PAS
Serratosa 3	LKO	9 months	4 total = 20	Alzet osmotic pump	530 µg	1 month	120 µg / week	PAS + behavior

glycogen

Serratosa lab Myozyme[®] ICV results – Experiment 1

- Genotype and age : 12 mo LKO mice
- <u>Administration</u>: Punctual 0.73 mg Myozyme®/10 μl saline, 10ul ICV injection (coordinates: AP:-0.3; ML: 0.9; DV: -2.5)
- Efficacy studies : PAS-D staining at 7 days after injection

Serratosa lab Myozyme[®] ICV results – Experiment 2

- Genotype and age : 12 mo Laforin knock-in R240X mice
- <u>Administration</u>: Punctual ICV injections (0.73 mg Myozyme®/10 μl saline; 1.46 mg Myozyme®/10 μl saline; 2.92 mg Myozyme®/10 μl saline) (coordinates: AP:-0.3; ML: 0.9; DV: -2.5)
- Efficacy studies : PAS-D staining at 7 days after injection
- Animals: 12 mice, 3 per group
- Results :

Serratosa lab Myozyme[®] ICV results – Experiment 3

- Genotype and age : 9 mo LKO mice
- <u>Administration</u>: Alzet® Micro-Osmotic Pump Model 1004 + Cannula ICV (0.11µl/h) (Cannula in coordinates: AP:-0.3; ML: 0.9) (3.23 mg Myozyme®/100 ul saline)
- Efficacy studies : Behavioral analysis and PAS-D staining at 1 month after pump implantation
- Animals analyzed : 8 mice

IT versus ICV administration in WT mice

112 Year Summary of Lafora Disease (LD) Research

VAL-1221 mechanisms of cellular entry

Completed: June 2020

Spatial Metabolomics, Lipidomics, and Glycomics

VAL-1221 and Myozyme – tail vein injection (IV)

PBS

Val-1221

Myozyme

Left and Right Quad Averages

VAL-0417 ICV administration ablates brain LBs in vivo

PBS Treated KO	PBS Treated KO Cerebral Cortex	PBS Treated KO Thalamus 20X	PBS Treated KO Cerebellum	PBS Treated KO Brainstem 20X
202				
	i i 100μm	100μm	⊢ 100µm	i−−−−− 100μm
0417 Treated KO	0417 Treated KO Cerebral	0417 Treated KO Thalamus 20X	0417 Treated KO Cerebellum	0417 Treated KO Brainstem 20X
	COTEX 202			
5mm	100μm	100μm	100µm	100μm

Antibody-enzyme fusion (AEF) VAL-0417 degrades LBs

Sk. Muscle

Lafora Disease (LD) – Childhood Dementia

- LD was first described >100 years ago by Gonzalo Rodríguez Lafora
- fatal, autosomal recessive disorder childhood dementia with horrendous epileptic episodes
- glucan/carbohydrate inclusions found in cytoplasm of cells from most tissues, (polyglucosan bodies, PGBs); glycogen storage disease (GSD)

Minassian, Pediatr. Neurol., 2001

Lafora, Virchows Arch Pathol Anat., 1911

Antiboatytitrozynderfusiom juge Fieplatform

Glycogen Architecture – Laforin & Malin

Gentry et al., 2005, *PNAS* Worby/Gentry et al., *JBC* Gentry et al., 2007, *JCB* Gentry et al., 209 *TiBS*

- 1. Degree of branching
- 2. Chain length distribution
- 3. Phosphate content (G2P, G3P and G6P)

Accurate and sensitive quantitation of glucose and glucose phosphates derived from storage carbohydrates by mass spectrometry

Young et al., 2020 Carb Polymers

Purification of native Lafora bodies (LBs)

Brewer et al., 2019 Cell Metabolism

0 µm